Damage control of a twin-column pier with a replaceable steel shear link in a cap beam under transverse seismic motion

Abstract
This paper proposes a novel twin-column pier with a steel shear link (SSL) installed in the cap beam to reduce seismic damage in the transverse direction. The SSL interrupts the rigid cap beam and relieves the coupled deformation of the two columns. Benefits of the yieldable SSL in the event of a strong earthquake are the longer effective deformation of a column and limited axial compressive load. A benchmark reinforced-concrete bridge is employed in a seismic performance evaluation to verify the damage reduction performance of the novel twin-column pier with an SSL. Five numerical models, calibrated in a physical component test, are built in ABAQUS; that is, one original bridge and four novel bridges with different SSLs and accompanying configurations. Modal analysis shows that introducing the SSL does not change the overall structural dynamic characteristics. The nonlinear dynamic analysis results indicate that adopting the SSL effectively reduces the peak compressive strain of the reinforced-concrete column, but energy dissipation from the SSL is negligible compared with the total inputted seismic energy. There is no evident change in the macro seismic response of the twin-column pier when using the SSL, such as overall drift and structural damping ratio. Moreover, a transverse continuous main girder is suggested for realizing an additional restoring moment at the column top, which further reduces compressive strain.
Funding Information
  • National Natural Science Foundation of China (No. 52078436)