Abstract
Frequent and severe droughts typically intensify wildfires provided that there is enough fuel in situ. The extent to which climate change may influence the fire regime and long time-scale hydrological processes may soften the effect of inter-annual climate change and, more specifically, whether soil-water retention capacity can alleviate the harsh conditions resulting from droughts and affect fire regimes, are still largely unexplored matters. The research presented in this paper is a development of a previous investigation and shows in what way, and to what extent, rainfall frequency, dry season length, and hydraulic response of different soil types drive forest fires toward different regimes while taking into consideration the typical seasonality of the Mediterranean climate. The soil-water holding capacity, which facilitates biomass growth in between fire events and hence favors fuel production, may worsen the fire regime as long dry summers become more frequent, such that the ecosystem’s resilience to climate shifts may eventually be undermined.