Polyfurfural-Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode for the Direct Determination of Nitrofurazone

Abstract
An electrochemical sensor based on a polyfurfural-electrochemically reduced graphene oxide modified glassy carbon electrode has been developed for the sensitive and rapid determination of nitrofurazone. The morphologies and properties of the sensor were characterized by electrochemical impedance spectroscopy, scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry (DPV). In pH 7.0 Britton-Robinson buffer solution, the as-prepared polyfurfural-electrochemically reduced graphene oxide modified glassy carbon electrode shows excellent electrocatalytic performance for the electrochemical reduction of nitrofurazone, and the reduction peak current is about 9.45, 1.31, and 1.25 times higher than that of the bare glassy carbon electrode, polyfurfural modified glassy carbon electrode, and electrochemically reduced graphene oxide modified glassy carbon electrode, respectively. The DPV determination of nitrofurazone indicates that the linear range and detection limit of nitrofurazone are 1-50 and 0.25 mu mol/dm(3), respectively. In addition, this sensor exhibits high selectivity, reproducibility, stability, and also was successfully used to directly determine nitrofurazone in the commercial antibacterial lotion with comparative sensitivity to high-performance liquid chromatography, showing its promising application prospects.
Funding Information
  • Fundamental Research Funds for the Central Universities (2015ZP028)
  • National Natural Science Foundation of China (21475046, 21427809, 21645004)

This publication has 41 references indexed in Scilit: