Dimethylaminomicheliolide Sensitizes Cancer Cells to Radiotherapy for Synergistic Combination with Immune Checkpoint Blockade

Abstract
Radiotherapy (RT) has demonstrated synergy with immune checkpoint blockade (ICB) in preclinical models. However, its potential as an immunoadjuvant is limited by low immunogenicity at low radiation doses and immunosuppression at high radiation doses. It is hypothesized that radiosensitizers can enhance both the anticancer and immunogenic effects of low-dose radiation. Herein the authors report the antitumor immunity of combined RT and immunotherapy with dimethylaminomicheliolide (DMAMCL), a prodrug of the anti-inflammatory sesquiterpene lactone micheliolide (MCL). DMAMCL sensitized cancer cells to a single fraction of RT in vitro by inducing apoptosis and DNA double-strand breaks. DMAMCL with 5 fractions of 2 Gy focal X-ray irradiation led to significant anticancer efficacy in subcutaneous and spontaneous models of murine cancer. DMAMCL-sensitized RT upregulated programmed death-ligand 1 (PD-L1) expression in the tumors. Combination of DMAMCL-sensitized RT with anti-PD-L1 ICB significantly enhanced antitumor efficacy by increasing tumor-infiltrating CD4(+) and CD8(+) T cells and establishing immune memory.
Funding Information
  • National Cancer Institute (U01‐CA198989, 1R01CA253655)
  • U.S. Department of Defense (PC170934P2)