InSAR Phase Unwrapping Error Correction for Rapid Repeat Measurements of Water Level Change in Wetlands

Abstract
Here, we present an enhanced algorithm to correct interferometric synthetic aperture radar (InSAR) phase unwrapping errors by incorporating iterative spatial bridging between islands and phase closure among interferograms. We use rapid repeat airborne synthetic aperture radar acquisitions from NASA’s airborne uninhabited aerial vehicle synthetic aperture radar (UAVSAR) instrument to estimate short-term changes in water level within coastal wetlands from a stack of consecutive interferograms acquired with very short temporal separation (~30 min). The algorithm is applied to six consecutive UAVSAR images collected in tidal wetlands of the Wax Lake Delta, Louisiana, USA. Validation of our water level change retrievals with in situ field observations was conclusive with high correlation and an RMSE generally smaller than 3 cm. Comparison of our algorithm with other phase unwrapping error correction methods shows significant improvement (30%–35% increase in the number of correctly unwrapped pixels) when applied to rapid changes in water level. The set of corrections presented in this work enables measurement of water level change in deltas and other areas where tides drive highly dynamic flooding of inland vegetated areas. Although demonstrated for water level change, the method is applicable to other InSAR datasets with large spatial gradients or observed discontinuities between coherent but spatially isolated areas.
Funding Information
  • National Aeronautics and Space Administration’s (NASA) Delta-X Mission
  • Science Mission Directorate’s Earth Science Division through the Earth Venture Suborbital-3 Program (NNH17ZDA001N-EVS3)