Prediction of Microbial Population in Sorghum Fermentation through Mathematical Models

Abstract
The mathematical models can be used as a tool in predicting microbial population in sorghum fermentation, either spontaneous fermentation or fermentation with the addition of lactic acid bacteria (LAB) inoculum. Gompertz model modified by Gibson, Gompertz model modified by Zwietering, Baranyi-Robert model, Fujikawa model, Richards model, Schnute model were used in predicting the growth of lactic acid bacteria (LAB) and coliform bacteria during spontaneous fermentation, and also the growth of LAB during fermentation with the addition of inoculum. Meanwhile, there was death (inactivation) of coliform bacteria during sorghum fermentation with the addition of LAB inoculum. The Geeraerd model and the Gompertz model modified by Gil et al. were used to predict the inactivation. The accuracy and precision of models were evaluated based on the Root Mean of Sum Square Error (RMSE), coefficient of determination (R2), and curve fitting. Gompertz model modified by Gibson had the highest accuracy and precision, which was followed by the accuracy of the Fujikawa model and Baranyi-Robert model in predicting the growth of LAB and the growth of coliform bacteria during spontaneous fermentation. Meanwhile, in predicting LAB growth during fermentation with the addition of inoculum, high accuracy and precision was obtained from Richards and Schnute models. In predicting the inactivation of coliform bacteria, Geeraerd model provided higher accuracy and precision compared to Gompertz model modified by Gil et al. Keywords: fermentation; inoculum; mathematical; model; sorghum; spontaneous