Different Influence of Structure Elements of Ionic Liquids on the Knoevenagel Condensation Reactions

Abstract
Ionic liquids (ILs) with 1,3-disubstituted imidazolium cations and the dimethyl phosphate (DMP) anion, as well as the chloride anion were prepared and characterized by 1H NMR spectra, chromatographic and titrimetric purity control, and determination of the moisture content and thermal stability. ILs with the DMP anion decompose only at temperatures above 240°C. These ILs were tested as both reaction media (solvents) and catalysts for the Knoevenagel condensation reaction. The impact of the most significant structure elements of ILs was evaluated for the rates and yields of the condensation reaction. IL anions have the greatest effect on the condensation reactions, and even the chloride anion has some catalytic effect on the Knoevenagel condensation. Side chains in the imidazolium cations influence the reaction course very little. The ability of the imidazolium cations to form hydrogen bonding with the transition state of the condensation reaction leads to a remarkable slowdown in the reaction rates.

This publication has 1 reference indexed in Scilit: