Optimization of Surface Roughness of AISI P20 on Electrical Discharge Machining Sinking Process using Taguchi Method

Abstract
This research aims to obtain optimal value for the surface roughness of the material AISI P20 on the Electrical Discharge Machining (EDM) Sinking process. In the present research, the Taguchi method is used to investigate the significant influence of process variables on the machining performance and determine the combination of process variables on the EDM process. Orthogonal array L18 (21 × 33) based on the Taguchi method is chosen for the design of experiment. The experiment is replicated twice to finding out the influence of four process variables such as type of electrode, voltage gap, on-time, and off-time on the response performance. Machining performance is evaluated by surface roughness as a response variable that had quality characteristics, smaller is better. These experimental data were analyzed using the Signal-to-noise ratio and Analysis of Variance. The analysis results show that the surface roughness is influenced by the type of electrode and on time. Combination of process variables to obtain optimal surface roughness are using graphite electrodes, and setting values of gap voltage 40 volt, on-time 250 μs, and off-time 20 μs. This combination of process variables can be applied to the manufacturing process using EDM sinking in order to produce a good quality product that determined based on the surface roughness value.