New Search

Export article
Open Access

Development of cordierite-based glass-ceramics by slip casting through selecting the appropriate sintering conditions

Mohammad Javad Maleki, Hudsa Majidian, Sara Banijamali, Mohammed Zakeri
Published: 29 June 2022

Abstract: The present work aims to prepare a dense cordierite-based glass-ceramic through slip casting and consequent heat treatment procedures. In this regard, sintering conditions were considered as the key variables to improve the properties of the glass-ceramic. For this purpose, glass frit powder was prepared through melting oxide powders (in the system of SiO2-Al2O3-TiO2-K2O-CaO-MgO). The mixed powders were then heat treated at 1450 °C for 1 hour and quenched in water. The glass frit powder was slip cast using the appropriate dispersant. Sintering was carried out by one-step, two-step, and three-step procedures. Specimens were characterized in terms of various analysis techniques including dilatometry, X-ray diffractometry, scanning electron microscopy, and mechanical strength measurement. Among the examined specimens, the sample sintered by a three-step approach was considered the optimized one which attained zero porosity. According to the obtained results, cordierite crystals were observable in this glass-ceramic matrix. A low coefficient of thermal expansion and a low dielectric constant were observed for the optimized glass-ceramic sample. The obtained results confirmed that the homogenous distributions of crystalline phases are responsible for the appropriate and desirable properties of the prepared glass-ceramic.
Keywords: glass ceramic / cordierite / step / optimized / treatment / sintering / casting / slip

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Synthesis and Sintering" .
Back to Top Top