Abstract
Increasing evidence has demonstrated the miRNAs’ action in cancerogenesis and tumor progression. Here, we explored the role and underlying mechanism of miR-3918 during glioma malignancy. miR-3918 and EGFR expression was detected in glioma tissues and tissues by RT-qPCR. The proliferative and migratory rate of glioma cells was assessed through CCK8 and Scratch wound-healing migration assay. Xenograft tumor mouse models were established for in vivo verification. A series of bioinformatics analysis coupled with luciferase reporter assays verified the targeted binding between miR-3918 and EGFR. Expression analyses demonstrated that miR-3918 was poorly expressed in glioma tissues while EGFR abundantly expressed. MiR-3918 overexpression impaired the proliferative and migratory capacities of glioma cells by inactivating PI3K/AKT and ERK pathways. Meanwhile, miR-3918 overexpression also retarded the growth of glioma xenograft. Mechanically, miR-3918 targeted EGFF which was further validated by the correlation of miR-3918 and EGFR expression in glioma tissues. When overexpressed, EGFR can restore the inactivated PI3K/AKT and ERK pathways caused by miR-3918 and influence the glioma cell proliferation and migration. Our findings are the first report that miR-3918/EGFR axis arrested the tumorigenesis of glioma via regulating PI3K/AKT and ERK pathways.

This publication has 26 references indexed in Scilit: