New Search

Export article
Open Access

Estimation of the Power of the Anomalous Microwave Emission

Kristopher T. Pickens, Giovanna Scarel
World Journal of Condensed Matter Physics , Volume 10, pp 105-117; doi:10.4236/wjcmp.2020.103007

Abstract: Context and Background: The product of the electromagnetic (EM) wave’s power P times its period τ, i.e. Pτ, is the amount of energy conserved in EM wave’s absorption in matter. Whether Pτ is the amount of energy conserved in the emission of EM waves from matter is not assessed. Motivation: In this research, we perform a computational study to explore the ability of Pτ to represent the amount of energy conserved in EM wave’s emission from matter. Hypothesis: Since the magnitude of the power P of emitted EM waves computed through Larmor’s formula for a rotating dipole is excessively small, we alternatively hypothesize that Pτ and the law of conservation of energy can lead to a realistic estimation of P. Methods: We estimate the power PAME of the anomalous microwave emission (AME), a well-characterized radiation generated in the interstellar medium (ISM) by spinning dust grains, and one possible source of contamination of the cosmic microwave background (CMB). For our estimation of PAME, we assume the AME to be generated in a molecular cloud mostly populated by spinning silicate nanoparticles (SSNs) or polycyclic aromatic hydrocarbon (PAH) spinning dust grains. Indeed, SSNs and PAHs are listed among the most probable sources of AME, and their characteristics are well-known. We discriminate between realistic and non-realistic values of PAME based upon the magnitude of two parameters that depend on PAME: the significant distance z, and the time of photon production T. The parameter z is the space interval from the spinning dust grain within which the spinning dust grain’s electric field is effective. Results: Using the information available for AME, SSNs and PAHs, we estimate the power PAME using both Larmor’s formula and Pτ. We compare and comment the results obtained for z and T. Conclusions: Our study highlights the effectiveness of Pτ over Larmor’s formula in providing a realistic value of PAME. This finding might have consequences in quantum technology of single photon detection and production.
Keywords: Anomalous Microwave Emission / Spinning Dust / Power of Emitted Radiation

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "World Journal of Condensed Matter Physics" .
Back to Top Top