Do Corticosteroid Receptor mRNA Levels Predict the Expression of Their Target Genes?

Abstract
The glucocorticoid stress hormones affect brain function via high-affinity mineralocorticoid receptors (MRs) and lower affinity glucocorticoid receptors (GRs). MR and GR not only differ in affinity for ligand, but also have distinct, sometimes opposite, actions on neuronal excitability and other cellular and higher order parameters related to cerebral function. GR and MR mRNA levels are often used as a proxy for the responsiveness to glucocorticoids, assuming proportionality between mRNA and protein levels. This may be especially relevant for the MR, which due to its high affinity is already largely occupied at low basal (trough) hormone levels. Here we explored how GR and MR mRNA levels are associated with the expression of a shared target gene, glucocorticoid-induced leucine zipper (GILZ, coded by Tsc22d3) with basal and elevated levels of corticosterone in male mice, using in situ hybridization. Depending on the hippocampal subfield and the corticosterone levels, mRNA levels of MR rather than GR mostly correlated with GILZ mRNA in the hippocampus and hypothalamus at the bulk tissue level. At the individual cell level, these correlations were much weaker. Using publicly available single-cell RNA sequencing data, we again observed that MR and GR mRNA levels were only weakly correlated with target gene expression in glutamatergic and GABAergic neurons. We conclude that MR mRNA levels can be limiting for receptor action, but many other cell-specific and region-specific factors ultimately determine corticosteroid receptor action. Altogether, our results argue for caution whilst interpreting the consequences of changed receptor expression for the response to glucocorticoids.
Funding Information
  • Corcept Therapeutics
  • Leiden University Medical Center

This publication has 49 references indexed in Scilit: