Residual energy intake, energy balance, and liability to diseases: Genetic parameters and relationships in German Holstein dairy cows

Abstract
Residual energy intake (REI) is an often-suggested trait for direct selection of dairy cows for feed efficiency. Cows with lower REI seem to be more efficient but are also in a more severe negative energy balance (EB), especially in early lactation. A negative EB leads to a higher liability to diseases. Due to this fact, this study aims to investigate the genetic relationship between REI and liability to diseases. Health and production data were recorded from 1,370 German Holstein dairy cows from 8 research farms over a period of 2 yr. We calculated 2 phenotypes for REI that considered the following energy sinks: milk energy content, metabolic body weight, body weight change, body condition score, and body condition score change. Genetic parameters were estimated with threshold or linear random regression models from days in milk (DIM) 1 to 305. Heritabilities for REI, EB, and all diseases ranged from 0.12 to 0.39, 0.15 to 0.31, and 0.09 to 0.20, respectively. Genetic correlations between selected DIM for REI and EB were higher for adjacent DIM than for more distant DIM. Pearson correlation coefficients between estimated breeding values (EBV) for REI and EB varied between 0.47 and 0.81; they were highest in mid lactation. Correlations between EBV for all diseases and REI as well as EB were negative, with lowest values in early lactation. Within the first 50 DIM, proportions of diseased days for cows with lowest EBV for REI were almost twice as high as for cows with highest EBV for REI. In conclusion, selecting dairy cows for lower REI should be treated with caution because of an unfavorable relationship with liability to diseases, especially in early lactation.