Approximate Analytical Solution of Two-Dimensional Nonlinear Time-Fractional Damped Wave Equation in the Caputo Fractional Derivative Operator

Abstract
In this work, we proposed a new method called Laplace-Pade-Caputo fractional reduced differential transform method (LPCFRDTM) for solving a two-dimensional nonlinear time-fractional damped wave equation subject to the appropriate initial conditions arising in various physical models. LPCFRDTM is the amalgamation of the Laplace transform method (LTM), Pade approximant, and the well-known reduced differential transform method (RDTM) in the Caputo fractional derivative senses. First, the solution to the problem is gained in the convergent power series form with the help of the Caputo fractional-reduced differential transform method. Then, the Laplace-Pade approximant is applied to enlarge the domain of convergence. The advantage of this method is that it solves equations simply and directly without requiring enormous amounts of computational work, perturbations, or linearization, and it expands the convergence domain, leading to the exact answer. To confirm the effectiveness, accuracy, and convergence of the proposed method, four test-modeling problems from mathematical physics nonlinear wave equations are considered. The findings and results showed that the proposed approach may be utilized to solve comparable wave equations with nonlinear damping and source components and to forecast and enrich the internal mechanism of nonlinearity in nonlinear dynamic events.

This publication has 49 references indexed in Scilit: