Development of a Framework to Compare Low-Altitude Unmanned Air Traffic Management Systems

Abstract
Several reports forecast a very high demand for Urban Air Mobility services such as package delivery and air taxi. This would lead to very dense low-altitude operations which cannot be safely accommodated by the current air traffic management system. Many different architectures for low-altitude air traffic management have been proposed in the literature, however, the lack of a common framework makes it difficult to compare strategies. The work presented here establishes efficiency, safety and capacity metrics, defines the components of an automated traffic management system architecture and introduces a preliminary framework to compare different alternatives. This common framework allows for the evaluation and comparison of different alternatives for unmanned traffic management. The framework is showcased on different strategies with different architectures. The impact of algorithmic choices and airspace architectures is evaluated. A decoupled approach to 4D trajectory planning is shown to scale poorly with agents density. The impact of segregating traffic by heading is shown to be very different depending on the algorithms and airspace access rules chosen.

This publication has 11 references indexed in Scilit: