Abstract
In recent years, high annual increasing load demand in Saudi Arabia has led to large investments in the construction of conventional power plants, which use oil or gas as the main fuel. The government is considering a large deployment of renewable energy for its 2030 vision plan. The Kingdom of Saudi Arabia is one of the best potential candidates for harvesting solar energy because of the country’s geographical location, clear sky, and vast land area. A recent energy policy announced by the government involves harvesting solar photovoltaic (PV) energy to reduce the country’s reliance on fossil fuel and greenhouse gas emissions. Using rooftop PV systems can help to shave the peak load and lead to a significant savings in the power sector through the reduction of annual installation of conventional power plants and standby generators. Employing solar PV at the end user level helps to reduce the overloading of transmission and distribution lines as well as decreases power losses. This paper will provide ratings for different rooftop PV systems that are being considered for installation for customers with various needs. The distribution of PV installation among the customers is as follows: 5% residential, 10% commercial, and 20% government. The effect of PV output power on weekly peak demand has been evaluated. The paper has also investigated the impact of the temperature on PV output power, especially during the summer. The PV power contribution is analyzed based on the assumption that weekly peak power production of solar PV coincides with weekly peak load demand. The PV model is implemented in Matlab to simulate and analyze the PV power.

This publication has 1 reference indexed in Scilit: