Rank-based risk target data analysis using digital twin on oil pipeline network based on manifold learning

Abstract
Oil and Gas Pipeline (OGP) projects face a wide scope of wellbeing and security Risk Factors (RFs) all around the world, especially in the oil and gas delivering nations having influencing climate and unsampled data. Lacking data about the reasons for pipeline risk predictor and unstructured data about the security of the OGP prevent endeavors of moderating such dangers. This paper, subsequently, means to foster a risk analyzing framework in view of a comprehensive methodology of recognizing, dissecting and positioning the related RFs, and assessing the conceivable pipeline characteristics. Hazard Mitigation Methods (HMMs), which are the initial steps of this approach. A new methodology has been created to direct disappointment investigation of pinhole erosion in pipelines utilizing the typical pipeline risk strategy and erosion climate reenactments during a full life pattern of the pipeline. Hence in the proposed work, manifold learning with rank based clustering algorithm is incorporated with the cloud server for improved data analysis. The probability risk rate is identified from the burst pressure by clustering the normal and leak category to improve the accuracy of the prediction system experimented on the lab-scale oil pipeline system. The numerical results like auto-correlation, periodogram, Laplace transformed P-P Plot are utilized to estimate the datasets restructured by the manifold learning approach. The obtained experimental results shows that the cloud server datasets are clustered with rank prioritization to make proactive decision in faster manner by distinguishing labelled and unlabeled pressure attributes.