Pt/CNT Micro-Nanorobots Driven by Glucose Catalytic Decomposition

Abstract
Swimming micro-nanorobots have attracted researchers interest in potential medical applications on target therapy, biosensor, drug carrier, and others. At present, the experimental setting of the swimming micro-nanorobots was mainly studied in pure water or H2O2 solution. This paper presents a micro-nanorobot that applied glucose in human body fluid as driving fuel. Based on the catalytic properties of the anode and cathode materials of the glucose fuel cell, platinum (Pt) and carbon nanotube (CNT) were selected as the anode and cathode materials, respectively, for the micro-nanorobot. The innovative design adopted the method of template electrochemical and chemical vapor deposition to manufacture the Pt/CNT micro-nanorobot structure. Both the scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to observe the morphology of the sample, and its elements were analyzed by energy-dispersive X-ray spectroscopy (EDX). Through a large number of experiments in a glucose solution and according to Stokers law of viscous force and Newtons second law, we calculated the driving force of the fabricated micro-nanorobot. It was concluded that the structure of the Pt/CNT micro-nanorobot satisfied the required characteristics of both biocompatibility and motion.
Funding Information
  • National Natural Science Foundation of China (61773275, U1813211)