\(C_{6}\)-decompositions of the tensor product of complete graphs

Abstract
Let \(G\) be a simple and finite graph. A graph is said to be decomposed into subgraphs \(H_1\) and \(H_2\) which is denoted by \(G= H_1 \oplus H_2\), if \(G\) is the edge disjoint union of \(H_1\) and \(H_2\). If \(G= H_1 \oplus H_2 \oplus \cdots \oplus H_k\), where \(H_1\), \(H_2\), ..., \(H_k\) are all isomorphic to \(H\), then \(G\) is said to be \(H\)-decomposable. Furthermore, if \(H\) is a cycle of length \(m\) then we say that \(G\) is \(C_m\)-decomposable and this can be written as \(C_m|G\). Where \( G\times H\) denotes the tensor product of graphs \(G\) and \(H\), in this paper, we prove that the necessary conditions for the existence of \(C_6\)-decomposition of \(K_m \times K_n\) are sufficient. Using these conditions it can be shown that every even regular complete multipartite graph \(G\) is \(C_6\)-decomposable if the number of edges of \(G\) is divisible by \(6\).