Abstract
In a flexoelectric sensing element using bending mode, estimation of the flexoelectric coefficient was investigated using 3-D stress/strain analysis and experiments. The proposed method uses the results (deformation and strain) from the finite element analysis (FEA). The estimated flexoelectric coefficients were compared with those obtained via the conventional method (Euler’s beam theory) under the assumption of the quasi 1-D stress field. The results show that the RMS value and standard deviation of the estimated flexoelectric coefficient for the 3-D stress field case of the sensing element are 31.51 µC/m and 0.24%, respectively. In addition, we found that the flexoelectric coefficient obtained from the results of the 3-D stress analysis is 1.8% smaller than that of the quasi-1-D stress analysis. Therefore, in order to obtain a more reliable flexoelectric coefficient in the sensing element, the results of the 3-D numerical stress analysis should be used for accurate estimation of the flexoelectric coefficient.
Funding Information
  • National Research Foundation of Korea (NRF-2017R1A2B4009049).)