Dynamic performance of optimized microwave assisted extraction to obtain Eucalyptus essential oil: energy requirements and environmental impact

Abstract
The dynamic performance of a microwave-assisted extraction (MAE) was studied during the extraction of eucalyptus essential oil. The effect of different process variables such as solid/liquid ratio (1:1, 1:3, or 1:5), stirring speed (0, 200, or 400 rpm), and power microwave output (360, 450, or 540 W) on obtained yield, energy requirements and environmental impact were assessed. The maximum yield was 1.26 ± 0.01% and the steam generation velocities between 4.8 and 8.8 g/min favor the extraction. In terms of environmental impact, the lowest EI99 value obtained was 6.93 ± 0.1 mPT/g. A multi-response optimization was performed to identify the operating conditions that maximize yield, while minimize energy requirements and environmental impact. Temperature dynamics and extraction kinetics were fitted to a second-order transfer function model, aimed to evaluate the role of heating patterns on the process performance. Finally, a controlled temperature experiment was carried out under the optimal conditions.