Analysis of possible ways to reduce sulfur content in pig iron

Abstract
One of the ways to increase the energy efficiency and intensity of blast furnace smelting, especially when using pulverized coal fuel, is to increase the hot strength of coke. In the conditions of OJSC NLMK, an oil additive was introduced into the coal charge to improve the coke quality. At the same time, sulfur content in the coke increases, and, consequently, sulfur content in the cast iron increases as well. In this regard, the task of finding ways to improve the desulfurization of cast iron in blast furnace becomes urgent. The main factors determining the desulfurization of cast iron are slag basicity, content of MgO oxide in it, temperature of the smelting products, and the slag viscosity. The purpose of this work was to compare the efficiency of sulfur removal by increasing the slag basicity and MgO content. On the basis of wellknown equations, an algorithm was developed that allows the problem to be solved. It was established that an increase in MgO content in the slag promotes desulfurization of cast iron to a greater extent than a basicity increase. In addition, an increase in MgO content by 1 % is accompanied by an increase in slag yield by 3.0 – 3.5 kg/t of cast iron. At the same time, an increase in basicity by 0.01 leads to an increase in the slag yield by 4 – 5 kg/t of pig iron. Consequently, reducing the sulfur content in pig iron by increasing the slag basicity requires less heat. In terms of the specific consumption of coke, difference in heat demand is 0.4 – 0.5 kg/t of pig iron. It is shown that with an increase in MgO content in the slag, the slag viscosity at a temperature of 1450 °C increases to a lesser extent than with an increase in basicity.

This publication has 1 reference indexed in Scilit: