New Search

Export article
Open Access

Gaits classification of normal vs. patients by wireless gait sensor and Support Vector Machine (SVM) classifier

Taro Nakano, , Steven Zupancic, Amanda Rodriguez, D.Y.C. Lie, J. Lopez, Tam Q. Nguyen

Abstract: Due to the serious concerns of fall risks for patients with balance disorders, it is desirable to be able to objectively identify these patients in real-time dynamic gait testing using inexpensive wearable sensors. In this work, we took a total of 49 gait tests from 7 human subjects (3 normal subjects and 4 patients), where each person performed 7 Dynamic Gait Index (DGI) tests by wearing a wireless gait sensor on the T4 thoracic vertebra. The raw gait data is wirelessly transmitted to a near-by PC for real-time gait data collection. To objectively identify the patients from the gait data, we used 4 different types of Support Vector Machine (SVM) classifiers based on the 6 features extracted from the raw gait data: Linear SVM, Quadratic SVM, Cubic SVM, and Gaussian SVM. The Linear SVM, Quadratic SVM and Cubic SVM all achieved impressive 98% classification accuracy, with 95.2% sensitivity and 100% specificity in this work. However, the Gaussian SVM classifier only achieved 87.8% accuracy, 71.7% sensitivity, and 100% specificity. The results obtained with this small number of human subjects indicates that in the near future, we should be able to objectively identify balance-disorder patients from normal subjects during real-time dynamic gaits testing using intelligent SVM classifiers.
Keywords: Support vector machines / Wireless sensor networks / Wireless communication / Feature extraction / Integrated circuits / Legged locomotion / Gyroscopes

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

References (10)
    Cited by 5 articles
      Back to Top Top