New Search

Export article
Open Access

Normalization based Multi-Criteria Collaborative Filtering Approach for Recommendation System

Noor Ifada, Nur Fitriani Dwi Putri, Mochammad Kautsar Sophan
Published: 13 December 2020
Rekayasa , Volume 13, pp 234-239; doi:10.21107/rekayasa.v13i3.8545

Abstract: A multi-criteria collaborative filtering recommendation system allows its users to rate items based on several criteria. Users instinctively have different tendencies in rating items that some of them are quite generous while others tend to be pretty stingy. Given the diverse rating patterns, implementing a normalization technique in the system is beneficial to reveal the latent relationship within the multi-criteria rating data. This paper analyses and compares the performances of two methods that implement the normalization based multi-criteria collaborative filtering approach. The framework of the method development consists of three main processes, i.e.: multi-criteria rating representation, multi-criteria rating normalization, and rating prediction using a multi-criteria collaborative filtering approach. The developed methods are labelled based on the implemented normalization technique and multi-criteria collaborative filtering approaches, i.e., Decoupling normalization and Multi-Criteria User-based approach (DMCUser) and Decoupling normalization and Multi-Criteria User-based approach (DMCItem). Experiment results using the real-world Yelp Dataset show that DMCItem outperforms DMCUser at most in terms of Precision and Normalized Discounted Cumulative Gain (NDCG). Though DMCUser can perform better than DMCItem at large , it is still more practical to implement DMCItem rather than DMCUser in a multi-criteria recommendation system since users tend to show more interest to items at the top list.
Keywords: collaborative filtering / diverse / DMCItem / implement / based multi criteria / criteria collaborative / normalization technique / normalization based

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Rekayasa" .
Back to Top Top