A Smart Fluorescent Light Spectroscope to Identify the Pork Adulteration for Halal Authentication

Abstract
The complication of adulterated ingredients in processed food items is widely observed in the food industry and remains a continuous disquiet for end users. This problem may affect consumers’ spiritual beliefs, likewise with their fitness and diet. Hence commercial foods should be scrutinized for the precision of the avowed ingredients. This study is dedicated to developing a Fluorescent light Spectroscope to identify the pork adulteration. A simple way of DNA extraction process has been introduced to make the system more convenient. The spectral bands linked with pork fat (PF), beef fat (BF) and their combinations in different food formulation were skimmed, and recognized by correlating them to those spectroscopically illustrative to clean Pork or PF and other different items. Every material has the properties to absorb some light of specific wavelength, and our activity is to determine thus wavelength range at which are absorbed or make any change by the target material. The findings have revealed that spectroscopy can be used as one of the procedures to detect and quantify of pork in different foods and beverages formulation for Halal verification purposes. Special laborious procedures and equipment both are essential for the existing testing methods named RT-PCR (Reverse transcription-polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay). Most of the food processors and dealers are not skillful to conduct sufficient testing for their products with all these sample preparation, extraction, analysis, and obtaining results which can be overcome by our proposed setup.

This publication has 42 references indexed in Scilit: