Abstract
We have isolated a 30,000‐dalton protein from Dictyostelium which cosedimented with and affected the low shear viscosity of actin. At low concentrations, this protein increased the low shear viscosity to greater than that of the actin control, whereas higher concentrations decreased viscosity. The viscosity decrease correlated with the formation of actin filament bundles, as seen electron microscopically. This protein resembled a previously reported actin‐binding protein from Dictyostelium [Fechheimer and Taylor, 84, J Biol Chem 259:4514] in electrophoretic mobility, Stokes radius, and ability to crosslink filaments, but was shown to be different by peptide mapping, lack of immunologic crossreactivity, and lack of sensitivity to calcium.