New Search

Export article

Domain-Abstraction-Based Approach for Learning Multidomain Planning

Hyeok-Joo Chae, Han-Lim Choi

Abstract: Although deep learning techniques have been successfully implemented to solve domain-specific unmanned aerial vehicle planning problems, it is still a challenging task to develop a learning method to solve multidomain planning problems. Because the multidomain problems often involve learning more parameters, a dilated dataset diminishes learning speed due to its size and high dimensionality. The following two observations help tackle the issue: the state space of planning problems can be decomposed into representations of the domain state and system state, and the dimensionality problem often arises due to the huge size of the domain rather than system state. Inspired by such observations, this work presents a learning framework consisting of two networks: 1) a domain abstraction network in the form of a variational autoencoder that reduces the dimension of the domain space into a compact form, and 2) a planning network that generates a planning solution for a given domain setting. The effectiveness of the proposed learning framework is validated in case studies.
Keywords: Domain Abstraction / solve / planning / multidomain / form / dimensionality / problems often / learning framework

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Aerospace Information Systems" .
References (8)
    Back to Top Top