Removal of Phosphorus from Water Using Marble Dust as Sorbent Material

Abstract
The removal of phosphorus from water using marble dust as sorbent material was studied by conducting batch tests, kinetic sorption model and isotherm model. The kinetic sorption model based on a pseudo equation was applied to predict the rate constant of sorption. Thorough investigations to understand the mechanism of phosphorus sorption onto the marble dust using kinetic sorption models, pseudo first order and pseudo second order kinetic sorption models showed that the kinetic sorption is consistent with the second order model, from which it can be inferred that the mechanism of sorption is chemisorption. The Langmuir and Freundlich isotherm models were applied to describe the equilibrium isotherms. The results of isotherm models showed that the Langmuir isotherm agrees very well with the experimental data compare with Freundlich isotherm. Batch tests and kinetic sorption models results showed that using the marble dust as sorbent material could be remove more than 94.3% of phosphorus from water.