Upregulated microRNA-210-3p improves sevoflurane-induced protective effect on ventricular remodeling in rats with myocardial infarction by inhibiting ADCY9

Abstract
Myocardial infarction (MI) is a significant cause of death and disability, and sevoflurane (sevo) can protect myocardium in clinic. We aim to assess the effects of miR-210-3p on MI rats undergoing sevo treatment with the involvement of adenylyl cyclase type 9 (ADCY9). Rat MI models were constructed by ligation of the left anterior descending, and the modeled rats were respectively treated with sevo, miR-210-3p agomir, antagomir, or overexpressed ADCY9. Then, miR-210-3p and ADCY9 expression, cardiac function, myocardial injury and fibrosis, and cardiomyocyte apoptosis in rats were evaluated. Target relation between miR-210-3p and ADCY9 was detected. miR-210-3p was downregulated while ADCY9 was upregulated in MI rats. Sevo was able to promote cardiac function and attenuate myocardial injury and fibrosis, as well as cardiomyocyte apoptosis in MI rats. These effects of sevo were strengthened by miR-210-3p elevation but abolished by miR-210-3p inhibition in MI rats. The role of elevated miR-210-3p in MI rats was reversed by overexpression of ADCY9. Upregulated miR-210-3p improves sevo-induced protective effect on ventricular remodeling in rats with MI through inhibiting ADCY9.

This publication has 34 references indexed in Scilit: