Finite-temperature buckling of an extensible rod

Abstract
Thermal fluctuations can play an important role in the buckling of elastic objects at small scales, such as polymers or nanotubes. In this paper, we study the finite-temperature buckling transition of an extensible rod by analyzing fluctuation corrections to the elasticity of the rod. We find that, in both two and three dimensions, thermal fluctuations delay the buckling transition, and near the transition, there is a critical regime in which fluctuations are prominent and make a contribution to the effective force that is of order T. We verify our theoretical prediction of the phase diagram with Monte Carlo simulations.