Allele-Specific PCR for KRAS Mutation Detection Using Phosphoryl Guanidine Modified Primers

Abstract
Establishing the Kirsten rat sarcoma (KRAS) mutational status is essential in terms of managing patients with various types of cancer. Allele-specific real-time polymerase chain reaction (AS-PCR) is a widely used method for somatic mutations detection. To improve the limited sensitivity and specificity, several blocking methods have been introduced in AS-PCR to block the amplification of wild-type templates. Herein, we used a novel modified oligonucleotide with internucleotide phosphates reshaped 1,3-dimethyl-2-imino-imidazolidine moieties (phosphoryl guanidine (PG) groups) as primers and blockers in the AS-PCR method. Four common KRAS mutations were chosen as a model to demonstrate the advantages of the PG primers and blockers utilizing a customized PCR protocol. The methods were evaluated on plasmid model systems providing a KRAS mutation detection limit of 20 copies of mutant DNA in a proportion as low as 0.1% of the total DNA, with excellent specificity. PG-modification can serve as the universal additional mismatch-like disturbance to increase the discrimination between wild-type and mutated DNA. Moreover, PG can serve to increase primer specificity by a synergetic effect with additional mismatch and would greatly facilitate medical research.