New Search

Export article

Numerical Ranges of the Real 2×2 Matrices Derived by First Principles

Clementina D. Mladenova,

Abstract: Here we demonstrate how the very definition of the numerical range leads to its direct geometrical identification. The procedure which we follow can be even slightly refined by making use of the famous Jacobi's method for diagonalization in reverse direction. From mathematical point of view, the Jacobi's idea here is used to reduce the number of the independent parameters from three to two which simplifies significantly the problem. As a surplus we have found an explicit recipe how to associate a Cassinian oval with the numerical range of any real $2\times 2$ matrix. Last, but not least, we have derived their explicit parameterizations.
Keywords: Jacobi's / numerical range / simplifies / slightly / diagonalization / mathematical / surplus / matrix / oval / refined

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Geometry, Integrability and Quantization" .
Back to Top Top