Gut microbial diversity across a contact zone for California voles: Implications for lineage divergence of hosts and mitonuclear mismatch in the assembly of the mammalian gut microbiome

Abstract
Gut microbial diversity is thought to reflect the co‐evolution of microbes and their hosts as well as current host‐specific attributes such as genetic background and environmental setting. To explore interactions among these parameters, we characterized variation in gut microbiome composition in California voles (Microtus californicus) across a contact zone between two recently diverged lineages of this species. Because this contact zone contains individuals with mismatched mitochondrial‐nuclear genomes (cybrids), it provides an important opportunity to explore how different components of the genotype contribute to gut microbial diversity. Analyses of bacterial 16S rRNA sequences and joint species distribution modeling revealed that host genotypes and genetic differentiation among host populations together explained more than 50% of microbial community variation across our sampling transect. The ranked importance (most to least) of factors contributing to gut microbial diversity in our study populations were: genome‐wide population differentiation, local environmental conditions, and host genotypes. However, differences in microbial communities among vole populations (β‐diversity) did not follow patterns of lineage divergence (i.e. phylosymbiosis). Instead, among‐population variation was best explained by the spatial distribution of hosts, as expected if the environment is a primary source of gut microbial diversity (i.e. dispersal limitation hypothesis). Across the contact zone, several bacterial taxa differed in relative abundance between the two parental lineages as well as among individuals with mismatched mitochondrial and nuclear genomes. Thus, genetic divergence among host lineages and mito‐nuclear genomic mismatches may also contribute to microbial diversity by altering interactions between host genomes and gut microbiota (i.e. hologenome speciation hypothesis).
Funding Information
  • American Museum of Natural History
  • Museum of Vertebrate Zoology
  • American Philosophical Society
  • American Society of Mammalogists