Three-Dimensional Imaging of Vortex Electromagnetic Wave Radar with Integer and Fractional Order OAM Modes

Abstract
Vortex electromagnetic (EM) waves, with different orbital angular momentum (OAM) modes, have the ability to distinguish the azimuth of radar targets, and then the two-dimensional reconstruction of the targets can be achieved. However, the vortex EM wave imaging methods in published research have no ability to obtain the elevation of the targets, and thus, the three-dimensional spatial structure and richer feature information of the radar target cannot be obtained. Therefore, a three-dimensional imaging method of vortex EM waves with integer- and fractional-order OAM modes is proposed in this paper, which can realize a three-dimensional reconstruction of a radar target based on a uniform circular array (UCA) with two-step imaging. First, the vortex EM wave with integer- and fractional-order OAM modes is generated, and the echo model with different OAM mode types is established. Thereafter, the echo with integer order is processed to obtain the range-azimuth image by fast Fourier transform (FFT). Then, in order to realize the three-dimensional reconstruction, the echo with fractional order is processed by utilizing the butterfly operation and analyzing the characteristics of the fractional Bessel function. Moreover, the resolution and reconstruction precision of the azimuth and elevation are analyzed. Finally, the effectiveness of the proposed method is verified by simulation experiments.
Funding Information
  • National Natural Science Foundation of China (61971434)