Computational analysis of novel high performance optically controlled RF switches for reconfigurable millimeterwave-to-THz circuits

Abstract
Optically controlled RF switches with a novel non-contact device architecture that achieves high performance in the millimeterwave-to-terahertz (mmW-THz) region are proposed and investigated through simulation. The significant change in conductivity in semiconductors caused by photogenerated carriers is used to develop RF switches having very high performance. By including a thin layer of insulator between the active semiconductor material and the metal contacts, the carrier concentration can be enhanced over that of conventional devices. For a prototype demonstration, G-band coplanar waveguide-based optical switches (using Si and Ge as active materials) with different contact geometries have been modeled and simulated. The proposed switches outperform both conventional solid-state switches and phase-change material-based switches in the switch figure-of-merit, and are promising for developing a novel class of tunable and reconfigurable mmW-THz circuits for advanced sensing, imaging, and communication.
Funding Information
  • National Science Foundation (ECCS-1711052, ECCS-1711631)