New Search

Export article
Open Access

A Hybrid Movie Recommender System and Rating Prediction Model

Muhammad Sanwal, Cafer Çalişkan

Abstract: In the current era, a rapid increase in data volume produces redundant information on the internet. This predicts the appropriate items for users a great challenge in information systems. As a result, recommender systems have emerged in this decade to resolve such problems. Various e-commerce platforms such as Amazon and Netflix prefer using some decent systems to recommend their items to users. In literature, multiple methods such as matrix factorization and collaborative filtering exist and have been implemented for a long time, however recent studies show that some other approaches, especially using artificial neural networks, have promising improvements in this area of research. In this research, we propose a new hybrid recommender system that results in better performance. In the proposed system, the users are divided into two main categories, namely average users, and non-average users. Then, various machine learning and deep learning methods are applied within these categories to achieve better results. Some methods such as decision trees, support vector regression, and random forest are applied to the average users. On the other side, matrix factorization, collaborative filtering, and some deep learning methods are implemented for non-average users. This approach achieves better compared to the traditional methods.
Keywords: artificial neural networks / items / recommender systems / Model / matrix / filtering / average users / various

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Back to Top Top