New Search

Export article
Open Access

Conditions for the validity of a class of optimal Hilbert type multiple integral inequalities with nonhomogeneous kernels

Bing He, Yong Hong, Zhen Li
Journal of Inequalities and Applications , Volume 2021, pp 1-12; doi:10.1186/s13660-021-02593-z

Abstract: For the Hilbert type multiple integral inequality $$ \int _{\mathbb{R}_{+}^{n}} \int _{\mathbb{R}_{+}^{m}} K\bigl( \Vert x \Vert _{m,\rho }, \Vert y \Vert _{n, \rho }\bigr) f(x)g(y) \,\mathrm{d} x \,\mathrm{d} y \leq M \Vert f \Vert _{p, \alpha } \Vert g \Vert _{q, \beta } $$ ∫ R + n ∫ R + m K ( ∥ x ∥ m , ρ , ∥ y ∥ n , ρ ) f ( x ) g ( y ) d x d y ≤ M ∥ f ∥ p , α ∥ g ∥ q , β with a nonhomogeneous kernel $K(\|x\|_{m, \rho }, \|y\|_{n, \rho })=G(\|x\|^{\lambda _{1}}_{m, \rho }/ \|y\|^{\lambda _{2}}_{n, \rho })$ K ( ∥ x ∥ m , ρ , ∥ y ∥ n , ρ ) = G ( ∥ x ∥ m , ρ λ 1 / ∥ y ∥ n , ρ λ 2 ) ( $\lambda _{1}\lambda _{2}> 0$ λ 1 λ 2 > 0 ), in this paper, by using the weight function method, necessary and sufficient conditions that parameters p, q, $\lambda _{1}$ λ 1 , $\lambda _{2}$ λ 2 , α, β, m, and n should satisfy to make the inequality hold for some constant M are established, and the expression formula of the best constant factor is also obtained. Finally, their applications in operator boundedness and operator norm are also considered, and the norms of several integral operators are discussed.
Keywords: 26D15 / 47A07 / Nonhomogeneous kernel / Hilbert type multiple integral inequality / Parameter condition / Boundedness of operator / Operator norm

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Inequalities and Applications" .
References (16)
    Back to Top Top