New Search

Advanced search
Export article
Open Access

Theoretical investigation of a few selected compounds as potent anti-tubercular agents and molecular docking evaluation: A multi-linear regression approach

Sciprofile linkShola Elijah Adeniji, Abdulwahab Isiaka, Sciprofile linkKalen Ephraim Audu, Sciprofile linkOlajumoke Bosede Adalumo
European Journal of Chemistry , Volume 11, pp 60-67; doi:10.5155/eurjchem.11.1.60-67.1949

Abstract: Emergence of multi-drug resistant strains of Mycobacterium tuberculosis to the available drugs has demanded for the development of more potent anti-tubercular agents with efficient pharmacological activities. Time consumed and expenses in discovering and synthesizing new drug targets with improved biological activity have been a major challenge toward the treatment of multi-drug resistance strain M. tuberculosis. To solve the above problem, Quantitative Structure Activity Relationship (QSAR) is a recent approach developed to discover a novel drug with a better biological against M. Tuberculosis. A validated QSAR model developed in this study to predict the biological activities of some anti-tubercular compounds and to design new hypothetical drugs is influenced with the molecular descriptors; AATS7s, VR1-Dzi, VR1-Dzs, SpMin7-Bhe and RDF110i. The internal validation test for the derived model was found to have correlation coefficient (R2) of 0.8875, adjusted correlation coefficient (R2adj) value of 0.8234 and leave one out cross validation coefficient (Qcv2) value of 0.8012 while the external validation test was found to have (R2test) of 0.7961 and Y-randomization Coefficient (cRp2) of 0.6832. Molecular docking shows that ligand 13 of 2,4-disubstituted quinoline derivatives have promising higher binding score of -18.8 kcal/mol compared to the recommended drugs; isoniazid -14.6 kcal/mol. The proposed QSAR model and molecular docking studies will provides valuable approach for the modification of the lead compound, designing and synthesis more potent anti-tubercular agents.
Keywords: Treatment / structure / TUBERCULOSIS / molecular docking / coefficient / Anti / Qsar Model

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "European Journal of Chemistry" .
Back to Top Top