New Search

Export article
Open Access

In situ electroporation of mammalian cells through SiO2 thin film capacitive microelectrodes

M. Maschietto, M. Dal Maschio, S. Girardi,
Published: 23 July 2021

Abstract: Electroporation is a widely used non-viral technique for the delivery of molecules, including nucleic acids, into cells. Recently, electronic microsystems that miniaturize the electroporation machinery have been developed as a new tool for genetic manipulation of cells in vitro, by integrating metal microelectrodes in the culture substrate and enabling electroporation in-situ. We report that non-faradic SiO2 thin film-insulated microelectrodes can be used for reliable and spatially selective in-situ electroporation of mammalian cells. CHO-K1 and SH-SY5Y cell lines and primary neuronal cultures were electroporated by application of short and low amplitude voltage transients leading to cell electroporation by capacitive currents. We demonstrate reliable delivery of DNA plasmids and exogenous gene expression, accompanied by high spatial selectivity and cell viability, even with differentiated neurons. Finally, we show that SiO2 thin film-insulated microelectrodes support a double and serial transfection of the targeted cells.
Keywords: Biophysical methods / Gene delivery / Science / Humanities and Social Sciences / multidisciplinary

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Scientific Reports" .
References (48)
    Back to Top Top