New Search

Export article
Open Access

Cardiomyocyte electrical-mechanical synchronized model for high-content, dose-quantitative and time-dependent drug assessment

Jiaru Fang, Xinwei Wei, Hongbo Li, , Xingxing Liu, Dongxin Xu, Tao Zhang, Hao Wan, Ping Wang,
Microsystems & Nanoengineering , Volume 7, pp 1-12; doi:10.1038/s41378-021-00247-0

Abstract: Cardiovascular diseases have emerged as a significant threat to human health. However, drug development is a time-consuming and costly process, and few drugs pass the preclinical assessment of safety and efficacy. The existing patch-clamp, Ca2+ imaging, and microelectrode array technologies in cardiomyocyte models for drug preclinical screening have suffered from issues of low throughput, limited long-term assessment, or inability to synchronously and correlatively analyze electrical and mechanical signals. Here, we develop a high-content, dose-quantitative and time-dependent drug assessment platform based on an electrical-mechanical synchronized (EMS) biosensing system. This microfabricated EMS can record both firing potential (FP) and mechanical beating (MB) signals from cardiomyocytes and extract a variety of characteristic parameters from these two signals (FP–MB) for further analysis. This system was applied to test typical ion channel drugs (lidocaine and isradipine), and the dynamic responses of cardiomyocytes to the tested drugs were recorded and analyzed. The high-throughput characteristics of the system can facilitate simultaneous experiments on a large number of samples. Furthermore, a database of various cardiac drugs can be established by heat map analysis for rapid and effective screening of drugs. The EMS biosensing system is highly promising as a powerful tool for the preclinical development of new medicines.
Keywords: safety / development / models / preclinical / drugs / cardiomyocytes / EMS / efficacy / electrical mechanical

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Microsystems & Nanoengineering" .
References (34)
    Back to Top Top