Performance of Distributed Energy Aware Routing (DEAR) Protocol with Cooperative Caching for Wireless Sensor Networks

Abstract
Considering Wireless Sensor Networks (WSNs) in today’s scenario, sending and receiving uninterrupted sensory data remains a challenge to achieve with minimal latency and energy consumption as low as possible. Energy consumption is exponentially growing in computing devices such as computers, embedded systems, portable devices, and wireless sensor networks. Extensive research has been in practice recently to minimize energy consumption without compromising the Quality of Service (QoS) that is to provide data to the requester node with minimum Delay and high Reliability. In this paper, a cooperative caching algorithm is used with the proposed Distributed Energy Aware Routing (DEAR) protocol that attempts to minimize energy consumption by reducing the packet overhead in the network and also providing the data to the requester with minimum delay by retrieving requested datum from the nearby caching node available in the vicinity of the requester or sink node. The simulation results clearly show that the energy consumption is less when the grid-based analytical model is used against the star/cluster based model while keeping the same necessary attributes.

This publication has 5 references indexed in Scilit: