New Search

Export article
Open Access

The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

Katharina Godzik,
Published: 29 October 2014

Abstract: The axon-protective Wallerian degeneration slow (WLDS) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLDS partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLDS after cut, suggesting that the maintenance of NAD levels in WldS neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1−/−), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.
Keywords: Axon injury / WLDS / ATP / Bioenergetics

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Molecular Neuroscience" .
References (38)
    Cited by 14 articles
      Back to Top Top