Abstract
Sandstones sampled from Patti Formation, Southern Bida Basin, were studied geochemically using Inductively Coupled Plasma Atomic Emission Spectrophotometer (ICP-AES) and an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique to evaluate their weathering and tectonic setting as well as to deduce the paleo-climatic conditions that existed during their deposition. Geochemically, SiO2 range from 73.9% to 86.2%, Al2O3 (6.7%~17.1%), Fe2O3 (1.1%~1.9%), K2O (0.1%~0.7%) while MgO, CaO, Na2O, P2O5, MnO and TiO2 were 80%) for indices like chemical index of alteration, chemical index of weathering, plagioclase index of alteration, mineralogical index of alteration and relatively lower values for weathering index of parker, recently used alpha indices (αAl E) of sodium (326.17αΑl Na1 (15.63), low Fe2O3 (1.27wt %), Al2O3 (15.82wt%) and TiO2 (0.46) suggest passive margin tectonic setting. This is supported by enriched ΣREE (209.64 ppm), ΣLREE (195.78), LREE/HREE (27.78) and negative Eu/Eu* (0.68), plots of log (K2O/Na2O) vs. SiO2 and SiO2/Al2O3 vs. K2O/Na2O. Major elements discriminant-function multi-dimensional diagram, DF1 (arcrift-col) vs. DF2 (arc-rift-col), for high-silica sediments revealed a continental rift tectonic setting. Thus, the Patti Formation sandstone underwent a high degree of weathering under a humid climatic condition within a continental rift tectonic setting.