Surgical Robot for Intraluminal Access: An Ex Vivo Feasibility Study

Abstract
Early-stage gastrointestinal cancer is often treated by endoscopic submucosal dissection (ESD) using a flexible endoscope. Compared with conventional percutaneous surgery, ESD is much less invasive and provides a high quality of life for the patient because it does not require a skin incision, and the organ is preserved. However, the operator must be highly skilled because ESD requires using a flexible endoscope with energy devices, which have limited degrees of freedom. To facilitate easier manipulation of these flexible devices, we developed a surgical robot comprising a flexible endoscope and two articulating instruments. The robotic system is based on a conventional flexible endoscope, and an extrapolated motor unit moves the endoscope in all its degrees of freedom. The instruments are thin enough to allow insertion of two instruments into the endoscope channel, and each instrument has a bending section that allows for updown, rightleft, and forwardbackward motion. In this study, we performed an ex vivo feasibility evaluation using the proposed robotic system for ESD in a porcine stomach. The procedure was successfully performed by five novice operators without complications. Our findings demonstrated the feasibility of the proposed robotic system and, furthermore, suggest that even operators with limited experience can use this system to perform ESD.
Funding Information
  • Japan Society for the Promotion of Science (20H04552)