GaN Heterostructures as Innovative X-ray Imaging Sensors—Change of Paradigm

Abstract
Direct conversion of X-ray irradiation using a semiconductor material is an emerging technology in medical and material sciences. Existing technologies face problems, such as sensitivity or resilience. Here, we describe a novel class of X-ray sensors based on GaN thin film and GaN/AlGaN high-electron-mobility transistors (HEMTs), a promising enabling technology in the modern world of GaN devices for high power, high temperature, high frequency, optoelectronic, and military/space applications. The GaN/AlGaN HEMT-based X-ray sensors offer superior performance, as evidenced by higher sensitivity due to intensification of electrons in the two-dimensional electron gas (2DEG), by ionizing radiation. This increase in detector sensitivity, by a factor of 104 compared to GaN thin film, now offers the opportunity to reduce health risks associated with the steady increase in CT scans in today’s medicine, and the associated increase in exposure to harmful ionizing radiation, by introducing GaN/AlGaN sensors into X-ray imaging devices, for the benefit of the patient.