New Search

Export article
Open Access

Modelling of Solar Power Production in Dry and Rainy Seasons Using Some Selected Meteorological Parameters

Nicholas N. Tasie, Friday B. Sigalo, Valentine B. Omubo-Pepple, Chigozie Israel-Cookey

Abstract: In this paper, we deployed the multiple linear regression method in developing a solar power output model for solar energy production, where the meteorological parameters are the independent variables. We fitted the model and found that the meteorological variables considered accounted for 94.88% and 99.61% of the power output in both dry and rainy seasons. We observed from the work that the solar panel performs well in all seasons but slightly better in the rainy seasons. This could be attributed to the washing away of dust particles from solar panels by the rain and higher operating temperature different from the specified manufactured temperature of 25°C. We observed that other factors such as the cloud slightly affect the optimal performance of the system. Panels inclined at an angle of 5° (Tilt) and facing south azimuth performs optimally, periodic washing of the surface of solar panels enhances optimal performance.
Keywords: Solar Energy / Solar Panel / Meteorological Parameters / Photovoltaic Cell / Multiple Linear Regression

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Energy and Power Engineering" .
References (6)
    Back to Top Top