Effects of Lizardite Addition on Technological Properties of Forsterite-monticellite Rich Ceramics Prepared from Natural Magnesite and Dolomite

Abstract
Lizardite rich peridotite has never been used to prepare ceramic specimens, especially in Morocco. For this raison, potential use of naturally abundant lazirditic material from the Rif domain, as a supply for ceramic industry, has been evaluated. The effects of lizardite addition to magnesite and dolomite mixtures on the thermomechanical properties of the calcined ceramics were also detailed. To achieve this target, natural lizardite, magnesite and dolomite samples were collected in ultrabasic Beni Bousra massif. Those raw samples were used for the synthesis of a forsterite-monticellite rich ceramics. Both raw and sintered samples were characterized by x-ray diffraction, scanning electron microscope and fourier transform infrared. The obtained results showed that both magnesite and dolomite were mainly composed of MgCO3 and CaCO3. In contrast, lizardite sample showed high amounts of SiO2, MgO and Fe2O3. An increased amount of lizardite in the initial mixtures enhanced mechanical and dimensional properties of the prepared ceramic specimens, and subsequently, the production of ceramics with the required technological properties. Thus, the preparation of Moroccan lizardite-based ceramics is technically feasible, economically justifiable and socially desirable due to the contribution to the economic growth of the raw materials sector, especially ceramic industry.