Depth resolution in multifocus laser speckle contrast imaging

Abstract
Laser speckle contrast imaging (LSCI) can be used to evaluate blood flow based on spatial or temporal speckle statistics, but its accuracy is undermined by out-of-focus image blur. In this Letter, we show how the fraction of dynamic versus static light scattering is dependent on focus, and describe a deconvolution strategy to correct for out-of-focus blur. With the aid of a z-splitter, which enables instantaneous multifocus imaging, we demonstrate depth-resolved LSCI that can robustly extract multi-plane structural and flow-speed information simultaneously. This method is applied to in vivo imaging of blood vessels in a mouse cortex and provides improved estimates of blood flow speed throughout a depth range of $300 {\rm{\unicode{x00B5}{\rm m}}}$.
Funding Information
  • National Institutes of Health (R01NS116139, R21GM128020)