Simulations of multi-rotor interaction noise at hovering & forward flight conditions

Abstract
A high-fidelity simulation of two in-line counter-rotating propellers in hover, and in forward flight conditions are performed. Near field flow and acoustic properties were resolved using Hybrid LES-Unsteady RANS. Far-field sound predictions were performed using Ffowcs-Williams-Hawkings formulation. The two-propeller results in hovering are compared with that of the single propeller. This enabled us to identify the aerodynamic changes resulting from the proximity of the two propellers to each other and to understand the mechanisms causing the changes in the radiated sound. We then considered the forward flight case and compared it with the corresponding hovering case. This enabled us to identify the aerodynamic changes resulting from the incoming stream. By examining the near acoustic field, the far-field spectra, the Spectral Proper Orthogonal Decomposition, and by conducting periodic averaging, we were able to identify the sources of the changes to the observed tonal and broadband noise.

This publication has 30 references indexed in Scilit: