New Design of Universal Reversible Gate Library

Abstract
We present new algorithms to synthesize exact universal reversible gate library for various types of gates and costs. We use the powerful algebraic software GAP for implementation and examination of our algorithms and the reversible logic synthesis problems have been reduced to group theory problems. It is shown that minimization of arbitrary cost functions of gates and orders of magnitude are faster than its previously counterparts for reversible logic synthesis. Experimental results show that a significant improvement over the previously proposed synthesis algorithm is obtained compared with the existing approaches to reversible logic synthesis.